
9/13/2020 How to Protect Against SQL Injection Attacks | Information Security Office

https://security.berkeley.edu/education-awareness/best-practices-how-tos/system-application-security/how-protect-against-sql 1/3

Information Security Office (/)
Home (/home) » Education & Awareness (/education-awareness) 

» Best Practices & How-Tos (/education-awareness/cybersecurity-best-practices-how-tos) 

» System & Application Security (/education-awareness/cybersecurity-best-practices/system-application-
security)

» How to Protect Against SQL Injection Attacks

How to Protect Against SQL Injection Attacks

What is SQL Injection?
SQL injection is one of the most common web attack mechanisms utilized by attackers to steal
sensitive data from organizations.  While SQL Injection can a�ect any data-driven application that
uses a SQL database, it is most often used to attack web sites.

SQL Injection is a code injection technique that hackers can use to insert malicious SQL statements
into input �elds for execution by the underlying SQL database.  This technique is made possible
because of improper coding of vulnerable web applications. 

These �aws arise because entry �elds made available for user input unexpectedly allow SQL
statements to go through and query the database directly.

A few examples of SQL Injection are available for review at the following resources:

OWASP Testing for SQL Injection
(https://www.owasp.org/index.php/Testing_for_SQL_Injection_(OTG-INPVAL-005))

ProgrammerInterview.com SQL Injection Example
(http://www.programmerinterview.com/index.php/database-sql/sql-injection-example/)

Why is SQL Injection such a security risk for the
campus?
Attackers are constantly probing the Internet at-large and campus web sites for SQL injection
vulnerabilities.  They use tools that automate the discovery of SQL injection �aws, and attempt to
exploit SQL injection primarily for �nancial gain (e.g. stealing personally identi�able information which
is then used for identity theft).

Because so many modern applications are data-driven and accessible via the web, SQL Injection
vulnerabilities are widespread and easily exploited.  Additionally, because of the prevalence of shared
database infrastructure, a SQL Injection �aw in one application can lead to the compromise of other
applications sharing the same database instance.

Once exploited, SQL Injection attacks can lead to:

https://security.berkeley.edu/
https://security.berkeley.edu/home
https://security.berkeley.edu/education-awareness
https://security.berkeley.edu/education-awareness/cybersecurity-best-practices-how-tos
https://security.berkeley.edu/education-awareness/cybersecurity-best-practices/system-application-security
https://www.owasp.org/index.php/Testing_for_SQL_Injection_(OTG-INPVAL-005)
http://www.programmerinterview.com/index.php/database-sql/sql-injection-example/


9/13/2020 How to Protect Against SQL Injection Attacks | Information Security Office

https://security.berkeley.edu/education-awareness/best-practices-how-tos/system-application-security/how-protect-against-sql 2/3

Theft, modi�cation, or even destruction of sensitive data such as personally identi�able
information and usernames and passwords

Elevation of privileges at the application, database, or even operating system level

Attackers "pivoting" by using a compromised database server to attack to other systems on the
same network

How to protect a web site or application from SQL
Injection attacks
Developers can prevent SQL Injection vulnerabilities in web applications by utilizing parameterized
database queries with bound, typed parameters and careful use of parameterized stored
procedures in the database.

This can be accomplished in a variety of programming languages including Java, .NET, PHP, and more.

Please consult the following resources for implementing parameterized database queries and
preventing SQL Injection in your code base:

OWASP: SQL Injection (https://www.owasp.org/index.php/SQL_Injection)

OWASP SQL Injection Prevention Cheat Sheet
(https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html)
(https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet)

OWASP Query Parameterization Cheat Sheet
(https://cheatsheetseries.owasp.org/cheatsheets/Query_Parameterization_Cheat_Sheet.html)

Additionally, developers, system administrators, and database administrators can take further steps
to minimize attacks or the impact of successful attacks:

1. Keep all web application software components including libraries, plug-ins, frameworks, web
server software, and database server software up to date with the latest security patches
available from vendors.

2. Utilize the principle of least privilege (https://en.wikipedia.org/wiki/Principle_of_least_privilege)
when provisioning accounts used to connect to the SQL database.  For example, if a web site only
needs to retrieve web content from a database using SELECT statements, do not give the web
site's database connection credentials other privileges such as INSERT, UPDATE, or DELETE
privileges. In many cases, these privileges can be managed using appropriate database roles for
accounts.  Never allow your web application to connect to the database with Administrator
privileges (the "sa" account on Microsoft SQL Server, for instance).

3. Do not use shared database accounts between di�erent web sites or applications. 

4. Validate user-supplied input for expected data types, including input �elds like drop-down menus
or radio buttons, not just �elds that allow users to type in input.

5. Con�gure proper error reporting and handling on the web server and in the code so that
database error messages are never sent to the client web browser. Attackers can leverage
technical details in verbose error messages to adjust their queries for successful exploitation.

https://www.owasp.org/index.php/SQL_Injection
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://cheatsheetseries.owasp.org/cheatsheets/Query_Parameterization_Cheat_Sheet.html
https://en.wikipedia.org/wiki/Principle_of_least_privilege


9/13/2020 How to Protect Against SQL Injection Attacks | Information Security Office

https://security.berkeley.edu/education-awareness/best-practices-how-tos/system-application-security/how-protect-against-sql 3/3

Is input filtering enough to stop SQL Injection?
A common misconception is that input �ltering and escaping can prevent SQL Injection.  While input
�ltering can help stop the most trivial of attacks, it does not �x the underlying vulnerability. 

In many cases, input �ltering can be evaded by attackers leaving your web application vulnerable
despite attempts to, for example, deny-list certain characters on a web form.

SQL Injection vulnerability email notification from
security@berkeley.edu (mailto:security@berkeley.edu) 
Security Contacts that receive a SQL Injection vulnerability notice are responsible for identifying and
notifying any stakeholders about the SQL Injection attack including functional owners, developers,
system administrators, and database administrators in order to determine the vulnerable and
potentially compromised resources.

Immediate action must be taken to address any con�rmed SQL Injection �aws discovered:

Once a person responsible for coordinating remediation is identi�ed, please respond to the
notice so that Information Security and Policy can work directly with the coordinator to ensure
full remediation

Coordinate an investigation of potentially vulnerable web pages and resources amongst
developers or other stakeholders

A review of web, application, and database logs may reveal the point of vulnerability and source
of attacks

Develop a plan to remediate any con�rmed SQL Injection �aws and prevent future attacks

Additionally, if your system stores, processes, or transmits sensitive data such as UC P2/3
(formerly UCB PL1) or UC P4 (formerly UCB PL2) data as described in the Berkeley Data
Classi�cation Standard (https://security.berkeley.edu/data-classi�cation-
standard#plclassi�cation), you should immediately reply to the security notice (to
security@berkeley.edu (mailto:security@berkeley.edu)) and notify the Information Security O�ce.

Copyright © 2020 UC Regents; all rights reserved

Powered by Open Berkeley (https://open.berkeley.edu)

Privacy Statement (/website-privacy-statement-berkeley-security)

Back to Top

mailto:security@berkeley.edu
https://security.berkeley.edu/data-classification-standard#plclassification
mailto:security@berkeley.edu
https://open.berkeley.edu/
https://security.berkeley.edu/website-privacy-statement-berkeley-security

